Decision-making without a brain: how an amoeboid organism solves the two-armed bandit
نویسندگان
چکیده
Several recent studies hint at shared patterns in decision-making between taxonomically distant organisms, yet few studies demonstrate and dissect mechanisms of decision-making in simpler organisms. We examine decision-making in the unicellular slime mould Physarum polycephalum using a classical decision problem adapted from human and animal decision-making studies: the two-armed bandit problem. This problem has previously only been used to study organisms with brains, yet here we demonstrate that a brainless unicellular organism compares the relative qualities of multiple options, integrates over repeated samplings to perform well in random environments, and combines information on reward frequency and magnitude in order to make correct and adaptive decisions. We extend our inquiry by using Bayesian model selection to determine the most likely algorithm used by the cell when making decisions. We deduce that this algorithm centres around a tendency to exploit environments in proportion to their reward experienced through past sampling. The algorithm is intermediate in computational complexity between simple, reactionary heuristics and calculation-intensive optimal performance algorithms, yet it has very good relative performance. Our study provides insight into ancestral mechanisms of decision-making and suggests that fundamental principles of decision-making, information processing and even cognition are shared among diverse biological systems.
منابع مشابه
The Exploration-Exploitation Tradeoff in Sequential Decision Making Problems
Sequential decision making problems often require an agent to act in an environment where data is noisy or not fully observed. The agent will have to learn how different actions relate to different rewards, and must therefore balance the need to explore and exploit in an effective strategy. In this report, sequential decision making problems are considered through extensions of the multi-armed ...
متن کاملA Simple Distribution-Free Approach to the Max k-Armed Bandit Problem
The max k-armed bandit problem is a recently-introduced online optimization problem with practical applications to heuristic search. Given a set of k slot machines, each yielding payoff from a fixed (but unknown) distribution, we wish to allocate trials to the machines so as to maximize the maximum payoff received over a series of n trials. Previous work on the max k-armed bandit problem has as...
متن کاملAmoeba-inspired Tug-of-War algorithms for exploration-exploitation dilemma in extended Bandit Problem
The true slime mold Physarum polycephalum, a single-celled amoeboid organism, is capable of efficiently allocating a constant amount of intracellular resource to its pseudopod-like branches that best fit the environment where dynamic light stimuli are applied. Inspired by the resource allocation process, the authors formulated a concurrent search algorithm, called the Tug-of-War (TOW) model, fo...
متن کاملCognitive Capacity and Choice under Uncertainty: Human Experiments of Two-armed Bandit Problems
The two-armed bandit problem, or more generally, the multi-armed bandit problem, has been identified as the underlying problem of many practical circumstances which involves making a series of choices among uncertain alternatives. Problems like job searching, customer switching, and even the adoption of fundamental or technical trading strategies of traders in financial markets can be formulate...
متن کاملHow Do Humans Handle the Dilemma of Exploration and Exploitation in Sequential Decision Making?
In an uncertain environment, decision-making meets two opposing demands. One is to explore new information, while the other is to exploit already acquired information. The opposition is long called the exploration-exploitation dilemma. In brain science, it is known that human brain estimates options comparatively, and the average behavior correlates to the Softmax action selection rule. Softmax...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2016